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Abstract. We show that Gorenstein singularities that are cones over singular Fano varieties
provided by so-called flag quivers are smoothable in codimension three. Moreover, we give
a precise characterization about the smoothability in codimension three of the Fano variety
itself.

1. Introduction

(1.1) Quivers and varieties of quiver representations appear in various places
in mathematics, see for example [1]. In [7] it was shown that grassmanians and
partial flag manifolds have a toric degeneration that can be described by a certain
quiver. This type of quivers can be generalised to what we call flag quivers.

We show in this paper that toric Gorenstein singularities X provided by such
flag quivers Q are smoothable in codimension three, cf. Corollary 33.

The idea is to determine their infinitesimal deformation spaces T)]g k=1,2):
T)]( describes the infinitesimal deformations, and T)% contains the obstructions for
extending deformations to larger base spaces—see [11] for more details. The results
will show that all deformations are unobstructed (cf. Theorem 32) and, moreover,
that there are enough of them for providing a smoothing in codimension three (cf.
Theorem 29).

The singularities X turn out to be cones over singular Fano varieties Py p).
In Theorem 31, we determine the (embedded) infinitesimal deformations of these
projective varieties. This yields to a precise characterization of those flag quivers
0 leading to Fanos Py () which are smoothable in codimension three. The condi-
tion is that every so-called simple knot (cf. Definition 26) can be by-passed with a
multipath connecting its neighbors, cf. Corollary 33 again.

The deformation theory of three-codimensional singularities in toric Fano vari-
eties becomes important if one considers three-dimensional Calabi-Yau subvarieties
given by nef partitions of the defining polytopes, cf. [4-6].
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(1.2) The paper is organized as follows: In Sect. 2 we recall the main facts
about affine, toric Gorenstein singularities X and their infinitesimal deformation
theory. In particular, we show how the modules T§ are linked to certain invariants
DF(A) of the polytopes A defining X.

In Sect. 3, we study mutually dual polytopes V(Q) and A(Q) provided by quiv-
ers, i.e. oriented graphs Q. In the smooth case, i.e. if V(Q) looks like an orthant in
a neighborhood of every vertex, this has already been done in [1] to describe the
moduli spaces of representations of the quiver Q. Here, we focus on the singular
case.

An important technical term is that of the tightness of a quiver Q. This will be
studied in Sect. 4. Every quiver can be “tightened”, and this property straightens the
relation between Q ant its associated polytopes. In particular, it allows to determine
all faces of A(Q) with a non-trivial D!-invariant. Then, we restrict ourselves to
the special case of so-called flag quivers. They are introduced (and their name is
explained) in Sect. 5. Moreover, we determine their Picard group.

Eventually, Sect. 6 deals with the deformation theory of flag quivers. For them,
it is possible to apply Theorems 1 and 2, i.e. we can detect all non-vanishing D!,
but prove the vanishing of D? for all relevant faces of A(Q). This translates into
the lack of obstructions for our singularities X.

2. Toric Gorenstein singularities

2.1 Let N, M be two mutually dual free abelian groups of finite rank; denote
by Nr, MR the vector spaces obtained by extending the scalars. Each polyhedral,
rational cone ¢ € N with apex in 0 gives rise to an affine, so-called toric variety
TV (o, N) := Spec C[o¥ N M]. See [8,9] for more details.

The toric variety TV (o, N) is Gorenstein if and only if o is the cone over a
lattice polytope A sitting in an affine hyperplane of height one in Np, i.e. if there
is a primitive R* € M such that A C [R* = 1] € Ng. In this situation, we denote
Xa = TV(o, N). The ring A = Cl[o¥ N M] as well as the modules T§A are
M -graded, and the homogeneous pieces T§A (—R) with R € M may be described
in terms of the polytope A: consider the complex

0 CO Cl 02 03 —_ ...
| || ||

0— N¢ — 69foeAN‘C/(C - fo _>@f1<ANC/span f—

with fi < A in the definition of C¥*! running through the k-dimensional faces of
A; its cohomology is denoted by Dk(A) = H¥ (C*). Then, in [2] we have shown
that

Theorem 1. [2, (6.6)] Assume that the two-dimensional faces of A are either
squares or triangles with area 1 and 1/2, respectively, i.e. Xa is a conifold in
codimension three. Then, if R € M is any degree, we have for k <2
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DF(AN[R=1]) ifR<lonA
T)]E (—R) = ( [ D ifR=<1lon
A 0 otherwise.
Moreover, the multiplication x° : T§ (—R) — T§(—(R —s)) withs € 0¥ N M is
induced from the restriction of D (A N [R = 1]) to the face AN[R —s = 1] =
AN[R=1]Nstof AN[R=1].

2.2) The vector space D' (A) or, to be more exact, a full-dimensional poly-
hedral cone in it, parametrizes the set of Minkowski summands of the polytope A:
Each vertex of a Minkowski summand is considered a mutation of an original vertex
Jfo € A —hence it provides an element of the corresponding summand N¢/C - fj
of C!. While it is possible to determine D! (A), which leads to Tl in many cases,
we have to use a vanishing theorem for the D?-invariant which is responsible for
the obstructions. In [2] we have proved the following result:

Theorem 2. [2, (1.1) and (4.7)] Let A be an n-dimensional, compact, convex poly-
tope such that every three-dimensional face is a pyramid (with arbitrary base). If
no vertex is contained in more than (n — 3) two-dimensional, non-triangular faces,
then D*(A) = 0.

3. Quiver polytopes

3.1 Let Q beaconnected quiver, i.e. an oriented graph. It consists of aset Qg of
vertices (or “knots”), a set Q1 of arrows, and two functions ¢, i : Q1 — Qg assign-
ing to each arrow o € Q1 its tail # (o) and head i («). This gives rise to the incidence
matrix Inc; it consists of #Q¢ rows and #Q1 columns, and fori € Qp, ¢ € Q| we
have

+1 ifi =t(a)
Incjq := 1 -1 ifi =h(x)
0  otherwise.

The associated linear map 7 : Z2' — Z20, 7 : [a] — [t(a)] — [h(e)] provides
an exact sequence

0>F -7 T 70 L 7 .9

with some free abelian group I of rank #Q; — #Qo + 1. It is generated by the
minimal, not necessarily oriented cycles in Q. Denote by H := ker(Z20 — Z)
the so-called set of integral weights; it contains a canonical one defined as 8¢ :=

) =3 4ep, 7(lal).
Definition 3. To any weight 6 € Hp := H ®7 R we associate the so-called flow
polytope

V(Q.6) :=n""@®)NRY.

For non-connected quivers, the flow polytope is defined as the product of the flow
polytopes associated to the connected components.
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Proposition 4. If 0 € H is an integral weight, then V(Q, 0) is a lattice polytope.

Proof. (Communicated by G. M. Ziegler) The vertices of V(Q, 6) may be obtained
as the unique solutions of linear equations with a submatrix of Inc as coefficients
and integers ¢, at the right hand side. On the other hand, square matrices having
=+1 as the only non-trivial entries with each of them occurring at most once in each
column can only have determinant 1 or O:

If every column contains both 1 and — 1, then the rows add up to zero. Otherwise,
there is a column having only one single non-trivial entry £ 1—and we use exactly
this one to develop our determinant and end up with a smaller matrix. m]

3.2) There are two weights being of special interest:

(1) The canonical weight 6¢ := w(1); we set V(Q) := V(Q, 6°). The shifted
polytope V(Q) — 1 = Fr N {r € R9!|r, > —1} contains 0 as an interior
lattice point. This makes it possible to define the dual polytope as

V(Q)' = {a e F [(a, V(Q) 1) = —1}.
V(Q)" C Fg is the smallest polytope containing 0 € F* and the so-called
quiver polytope
A(Q) := conv {a“ =i"(a]) eF*|a e Ql}.

In particular, both V(Q)" and A(Q) are compact lattice polytopes.

(i) The zero weight 6 := 0. Then, V(Q, 0) C F is a polyhedral cone with apex;
itis the dual cone of R>o - V(Q)" = R0 - A(Q). Moreover, V(Q, 0) occurs
as the “tail cone” (cone of unbounded directions) V(Q, 0) = V(Q, ) for
every weight 6 € Hp.

The quiver Q lacks oriented cycles if and only if
V(Q,0) =0 <= V(Q)is compact <= 0 € int V(Q)" <= 0 € int A(Q).

If this is the case, then A(Q) = V(Q)" is a reflexive polytope in the sense of
Batyrev, cf. [3]. The corresponding affine toric Gorenstein singularity X (o) =
TV(o, N) with N :=F* @ Z and o := cone (A(Q)) C Nr will be our main sub-
ject of investigation; it equals the cone over the projective toric variety Py(g) =
TV (V(Q)), F*) with A'(V(Q)) denoting the normal fan of V(Q).

Example 5. Let Q be the quiver

with the corresponding polytope
A(Q) = conv{d!, ..., a% < R(’/(a1 +a?,a® +a*, ad +a

being an octahedron with unit triangles as facets. In particular, since D' and D?
of an octahedron is 0 and C?, respectively, Theorem 1 implies that X A(Q) s rigid,
but 72 = T?(—R*) is two-dimensional. The singularity X a(g) is well known; its
equations are the 2-minors of a general (2 x 3)-determinant. It illustrates the disap-
pointing fact that T)% might contain more than just the obstructions, cf. Remark (6.5).
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(3.3) By a subquiver P € Q we mean a quiver P with Py = Qpand P; C Q.
Itis not assumed to be connected; in particular there might even occur isolated points
p € Py. Fixing a weight 6 € Hp, we will use the abbreviation 6(S) := ZpES 0p
for subsets S C Q.

Definition 6. Let 6 € Hp be a weight of Q. A subquiver P C Q is said to be

e 0O-(semi-) stable (cf. [10]) if any non-trivial, proper subset S C Py that is closed
under P-successors fulfills 6(S) < 0 (or < 0, respectively);

e 0O-polystable if the connected components PV of P, meant as connected quivers
with a possibly smaller set Py € Qo, fulfill 9(P;) = 0 and, moreover, are
f-stable.

While these notions where defined in [10] to obtain decent moduli spaces of
quiver representations, we will just use them to describe the faces of our quiver
polytopes.

Lemma?7. (1) “Stable” —> “polystable” — “semistable”.

(2) Stable quivers are always connected. Semistability of P implies 0(Py) = 0
for its connected components.

(3) The notions “stability” and “semistability” are closed under enlargement of
the subquiver P C Q; “polystability” is not.

(4) A subquiver P C Q is polystable if and only if V(P, 0) contains a point with
positive coordinates, i.e. if the set w~1(0) N Rf‘o is non-empty.

(5) A subquiver P C Q is semistable if and only if V(P, 0) # .

(6) Every semistable subquiver P C Q contains a (unique) maximal polystable
subquiver P C P.

Proof. The first two parts are straightforward. Claim (3) follows from the easy fact
that the larger P € Q, the more difficult is it for S C Qg to be closed under
P-successors. However, the corresponding property fails for “polystability”, since
any enlargement of P € Q may unify connected components.

To see that the condition in (4) suffices for polystability, let S € Qg be an
arbitrary subset. We may use any r € 7~ (6) to calculate 6(S) as

0S) = D ra— D ra

5%(Q0\S) (Qo\S) S s

Now, ifr € 77! @ n RP! and S is closed under P-successors, then the first sum is
void. However, if S is not a union of connected components of P, then there must
be at least one P-arrow connecting Qo\S and S, i.e. contributing to the second
sum. In particular, if » has only positive coordinates, then 8(S) < 0.

For proving the necessity of the condition, we may assume that P = Q is
0-stable. If 7=1(8) N Rg(') = (), then the vector 6 = (0)) pcg, may not be writ-
ten as a positive linear combination of the columns of the incidence matrix Inc
introduced in (3.1). Thus, duality in convex geometry provides the existence of
a non-trivial vector i € R0 /(R - 1) such that (h,Inc(e q)) > 0 for every arrow
a € Q,but (h,0) < 0. The first property means h;) > hj (). Hence, denoting
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by c; < --- < cx(k > 2) the values of 4 on Q¢ and choosing an arbitrary ¢y < c1,
the subsets

Sv:={p € Qolhp =} C Qo (v=0,...,k)

are closed under successors. In particular, by the stability of Q, we obtain6(S,) < 0
forv=1,...,k—1and 6(Sp) = 6(Sx) = 0. This yields a contradiction via

k—1 k

0 <D (cv = corn)B(Su) = D ey -0(SN\So-1) = D hyby <0.
v=1

v=1 P€Qo

Finally, we have to show (5) and (6). First, if P € Q is a subquiver with V(P, 0) #
@, then we may choose an element € V (P, §) with maximal support P := {« €
Py | ry > 0}. Hence, by (4), the corresponding subquiver P is polystable and, using
(1) and (3), P must be semistable.

It remains to check that V(P,0) # (@ for semistable P C Q. We do this
by copying the second part of the proof of (4) with minor changes: The stronger
condition 7~1(9) N Rg(l) = () implies the existence of an & satisfying the strict
inequality (h, #) < 0. On the other hand, if Q is semistable, we have only s, > 0.
Nevertheless, one obtains the same contradiction. O

Corollary 8. For a subquiver P C Q, we realize its flow polytope as the subset
V(P,0)={reV(Q,0)|re =0ifa ¢ P}.

This provides an order preserving bijection between the poset of 0-polystable sub-
quivers, on the one hand, and the face lattice of V(Q, 0), on the other. In partic-
ular, since the dimension of V (P, 0) is (#P) — #Qo + #(components of P)), the
0-polystable trees yield the vertices of V(Q, 0).

Proof. Every face of V(Q,0) is of the form f = {r € V(Q,0)|ry = 0,i =

1, ..., k} for some edges al, .., ok e Q1. Assuming that the set {al, .. ,ak} is
maximal for the given face f, we obtain P by P; := Ql\{al, e, ak}. O
(3.4) Every connected quiver Q is stable with respect to its canonical weight

6¢. In this situation, we had defined in (3.2) the polytopes A(Q) € V(Q)". In
general, under the dualization VY := {a| (a, V) > —1} of polytopes containing
the origin, we obtain an anti-isomorphism of the posets

@ : {faces of V without 0} — {faces of V" without 0}
fr—>{aeV’|(a f)=~1}

Note that faces containing O correspond to faces of the dual tail cone—this gives a
kind of a continuation of ®. If, e.g., f < Visas above and [0, f] < V denotes the
smallest face containing 0 and f, then ® ([0, f]) is the tail cone of ®(f) < VY.

Applying this to V := V(Q) — 1, we obtain for every 6¢-polystable subquiver
P C Q the face

F (P, A(Q)) := ®(V(P,05)) = conv {a* € F*|a ¢ P}.
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Since F' (P, A(Q)) does not contain 0, it is also a face of the quiver polytope A(Q).

Example 9. With Q being the quiver o
° °
\‘~Z-M—/

we obtain Fj, = R3?/(a — b+ c). Using the basis {a, ¢}, we can draw the polyhedra
V(Q) CFgrand V(Q)Y, A(Q) C [ as follows:

c b c b
a \
°
¢ a o a

b
Here are the five proper 6¢-polystable subquivers giving rise to faces of them:
P P P
. \_/ . . \_/ . . \/ . . . ¢
a ab b be c
3.5) Via contraction, we will construct new quivers I'g (P) which allow to

consider the faces F (P, A(Q)) < A(Q) as autonomous quiver polytopes. Note
that even if Q has no oriented cycles, I'g (P) might have a lot of them.

Definition 10. For any subquiver P € Q we define a quiver I'g(P). Its verti-
ces I'g(P)q are the connected components of P, and the arrows are defined as
Lo (P)1 := Q1\P1. Every weight 6 on Q induces a weight 6 on I"p(P) with 6¢
staying the canonical weight. If P was 6-polystable, then 6 turns into the 0-weight
onI'g(P).

Proposition 11. Let P < Q be a non-empty, 6°-polystable subquiver. Then, the
face F(P, A(Q)) < A(Q) equals the quiver polytope A (FQ(P)) and has dimen-
sion (#I'1 — #1p).

Moreover, it is contained in a plane of F* having lattice distance one from the
origin.

Proof. Note that 8¢ = 0 in I'g (P). The original quiver Q and I'g (P) are related
by the following commutative diagram where the vertical maps are surjective.

0——=F—701 — 700 ——>7—>0

0—=FT) —7l —7l0o —=7 —>0

Now, the first claim follows easily from the dual picture: F(I')* — F* is satu-
rated, and F(I")* is the image of Z'! under the surjection Z2! —> F*. The part
concerning the height is a consequence of the fact that the faces of V(Q)" are
contained in affine hyperplanes [r = —1] C F* for certain vertices r € V(Q) — 1.
By Proposition 4, these r are contained in the lattice IF. O

Example 9 (continued). The A(Q)-faces corresponding to the five 8¢-polystable
subquivers are quiver polytopes arising from I' consisting of one vertex and one or
two loops.
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4. Tightness

“.1) To ensure that there is a one-to-one correspondence between arrows
a € Q1, on the one hand, and facets V(Q\«, 0) of V(Q, 6), on the other, we need
the notion of tightness. In particular, if Q is 6¢-tight, then a* € F* will be the
mutually distinct vertices of A(Q).

Definition 12. If 6 € H is an integral weight, then the quiver Q is called 0-tight if
for any o € Q; the subquiver Q\« is f-stable.

Lemma 13. (1) Let6 € Hsuchthat Q is6-stable. By contraction of certain arrows
in Q, the weight 0 becomes tight without changing the polytope V (Q, 6). More-
over; the canonical weight 6€ may be tightened in such a way that not only the
polytope V(Q, 6°), but also V(Q, 0) remains untouched.

(2) Assume that Q is 0-tight. If P C Q is a 0-polystable subquiver, then, I g (P)
becomes 0-tight.

(3) Let " be a O-tight quiver with #'o > 2. Then, not counting the loops, every
knot of T has at least two in- and outgoing arrows, respectively. In particular,

#I'1 = 2#T"g + #(loops of T).

Proof. (1) If Q\{«} is not 6-stable, then there exists a subset S C Q that is, up
to «, closed under successors and satisfies 6(S) > 0. Let B1, ..., B; be the arrows
pointing from Qg\ S to S; since Q is f-stable, « leads in the opposite direction.

Ifr € 771(0), thenry = >, g +6(S) = >, rp. Hence, the relations rg > 0
together with the 7 ~! (9)-equations force that r, > 0. In particular, we may contract
« without changing the polytope V(Q, 6) (including its lattice structure).

Tightening 6¢, we obtain 1 — [ = 0°(S) > 0. In case of [ = 0, the 6-stability
of Q implies that 6(S) > 0. In particular, contracting & does not change neither
V(Q, 0, nor V(Q, 0). If | = 1, then the situation is symmetric with 8¢(S) = 0.
Depending on whether 6(S) > 0 or 6(S) < 0, we should contract « or S, respec-
tively.

(2) Let € I't = Q1\Aj. Then, the connectivity of O\« implies the connec-
tivity of I"\ . Moreover, projecting any positive r € V(Q\«, 0) along the forgetful
map Z2' — Z'' (see the diagram of the proof of Proposition 11), provides an
7 € V(I'\«, 0) with positive entries.

(3) Forevery a € I'1, non-trivial subsets S € I'g cannot be closed under (I'\«)-
successors. Hence, there is always a 8 € I'1\« leaving S. Now, the claim follows
from applying this fact to the cases #S = 1 or #(I'0\S) = 1. O

“4.2) If O has no oriented cycles, then A(Q) = V(Q)", and Proposition 11
yields all its faces—they equal A(I") withI" = I" g (P) for 8¢-polystable subquivers
P < Q. Moreover, Q and hence I' maybe assumed to be §¢-tight. In particular,
#I'1 > 2#Ig + #(loops of I).
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Using this, we are now classifying all possible faces of those polytopes A(Q)
up to dimension three. Note that ¢ = 0in I'.
Dimension one: T" consists of one vertex with two loops. The corresponding poly-
tope A(T") is a lattice interval of length one.
Dimension two: The case #['o = 1 yields the triple loop with A(I") being the
standard triangle. On the other hand, there is only one quiver with 6¢(I") = 0 that
consists of two vertices, four arrows, but no loops:

Ox= Q) I (2) = I'™m(2)

The corresponding polytope A(I") is the unit square.
Dimension three: The case #I'() < 2 yields the quivers of the previous list with one
additional loop. Adding a loop to I' corresponds to taking the pyramid of height 1
over the corresponding polytope A (I"). In particular, we obtain the unit tetrahedron
and the pyramid over the unit square.

On the other hand, there are two different quivers involving three vertices and

O O @] @)

The first quiver provides an octahedron. However, compared with the quiver
polytope presented in Example (3.2), the central point does no longer belong to the
lattice. The other quiver provides the prism of height 1 over the unit triangle.

Corollary 14. Let Q be a quiver without oriented cycles. Then, A(Q) and its
faces satisfy the assumptions of Theorem 1: The two-dimensional faces are either
squares or triangles with area 1 and 1/2, respectively. Thus, X a(g) is a conifold
in codimension three, and the vector spaces T}"( may be obtained by calculating the
corresponding D-invariants of the A(Q)-faces.

4.3) Let O be a quiver without oriented cycles. We conclude this chapter
with determining all proper faces of A(Q) having a non-trivial D! (cf. (2.1)), i.e.
admitting a non-trivial splitting into Minkowski summands.

Example 15. If m € S is a permutation, then we denote by I' (k, ) the quiver with

vertex set I'(k, m)o = Z/kZ and

arrows B, yp € I'(k, ) defined as B, : p — (p+ 1) and y), : p — 7 (p) for

p=1,...,k.

The permutations 7*'(p) := p+ 1 and 7°(p) := p — 1 are of special interest;
the quivers '™ (k) := I'(k, ™) and ' (k) := ['(k, 7°®) are double n-gons as
shown in (4.2) for k = 2 and k = 3. The corresponding polytopes are

A (T™(k)) = [crosspolytope of dimension k] and A (I""(k)) = AF~! x [0, 1].
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In particular, while D! (A(I'*(k))) = 0 fork > 3, we have dim D! (A(I"*(k))) =
1 with the obvious Minkowski decomposition.

Lemma 16. Let " be a quiver which is tight with respect to ¢ = 0. Assume that
b C I'y is a simple cycle, i.e. not touching vertices twice.

(1) Contracting b, the resulting quiver T' := T'/b is still tight with respect to
0¢ = 0. Moreover, A(') is a face of A(T') inducing the restriction map
p: D' (AM) — D' (A(D)).

(2) Unless T =T'(k, ) and b is a cycle of length k, the map p is injective.

Proof. Letb = {a!, ..., ¥} and denote by a' the image of [o'] in F*. The rela-
tions among the vertices of A(I") which are induced from I'-knots are exactly the
relations among the vertices of A(T"). On the other hand, the knots being touched
by b express (a't! — a') as an element of the vector space associated to the affine
space A spanned by A(D). In particular, A(T) is a face of A(T") and, moreover, the
remaining vertices a', . . ., a¥ are contained in an affine plane being parallel to A;
they form their own face B := conv{a!, ..., aky.

Lett € D' (A(I"))—here we think of it as a tuple of dilatation factors for every
compact edge of A(I"): The factors arise after applying the differential d' : C! —
C? from (2.1); since it yields 0, all the components of the image must be contained
in the subspaces span f7.

Since all vertical edges connecting A(I") and B have the same dilatation factor,
we may assume these factors to be zero. Now, if p(¢f) = 0, then the dilatation
factors inside A (T") are also mutually equal; it remains to show that they vanish. If
not, then we get a map

L ..., d*y — {vertices of A(")}

{a
assigning a’ the only vertex a € A(I") such that ad' is an edge of A(T"). Since this
map is obviously surjective, we obtain

#T) < k = #b.
Hence, I" equals b with an additional arrow leaving and reaching each knot. O

Proposition 17. Let Q be a 0°-tight quiver without oriented cycles. Then, the only
proper; k-dimensional faces F(P, A(Q)) of A(Q) having a non-trivial D' are
those with ' g (P) = ' (k).

Proof. LetI" := I"g(P). In the proof of the previous lemma we have seen that the
existence of a loop, i.e. of a cycle of length 1, implies that A(T") is a pyramid over
A(T). In particular, it has a trivial D'.

On the other hand, via a successive contraction of simple cycles of length k; > 2,
we can produce a sequence of quivers, beginning with I', such that

e we avoid the contraction of k;-cycles in quivers isomorphic to I"(k;, ), and
e we end with either the existence of loops or with a quiver isomorphic to some
' (m). The latter leads to a non-trivial D! only for m = 2.
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By Lemma 16(2), this sequence represents D! (A(I")) as a subset of either 0
or D! (A(I““’f(2))) = C. On the other hand, if the contraction of a simple k;-cycle
leads from I' to Tt then

#HOGHY = #(T) — (ki — 1) and #(TIH = #(T) — k.

In particular, relations like #(I'}) > 2#(I'}) or #(I"}) > 2#(I"})) will be inherited
from I'? to I+ If k; > 3, then the weak inequality for I'! does even imply the
strict one for ['*+!. Thus, if our sequence ends with '*(2), only 2-cycles have been
contracted successively from I'. This enforces that I' = " (k). |

5. Flag quivers

5.1 First, we will describe the classes of Weil and Cartier divisors on the
projective variety Py(p ¢) provided by a general quiver Q with weight 6 < L.
Assume, w.l.0.g., that Q is f-tight. We introduce the notation

T%(Q) := {6-polystable trees T < Q}.

The tightness of Q implies that () 7" G(Q) =@.ForT € TQ(Q), or more general
for any 6-polystable subquiver P < Q, we may define

H(P) := H (To(P)) = ker (Z”“"""’ =y Z)
with Hl and I" 9 (P) as mentioned in (3.1) and Definition 10, respectively.
Proposition 18. The class group DivCl (Py (g ¢)) of Weil divisors equals H.

Proof. Equivariant Weil divisors correspond to maps A" — Z with A denoting
the inner normal fan N (V(Q, 6)) of V(Q, #) C Fg. Since the elements of /(D
encode the facets of V(Q, 60), i.e. the 8-polystable subquivers Q\«, the equivariant
Weil divisors may be written as elements of Z<1,

On the other hand, as being well known in the theory of toric varieties, the
principal divisors among the equivariant ones are given by F C Z€1. Hence, the
claim follows from

Z8p =im (29 - 22) =ker (22 5 7) = H.
O
5.2) Using the fact that divisors on a toric variety are locally principal if and

only if they are principal on the equivariant affine charts, we obtain a description
of PiC(Pv(Q,g)) as well.

Proposition 19. The Picard group Pic(Py(g,9)) of the projective toric variety
]P)V(Q,@) equals

Pic(Py(p,0)) = ker (H — ®TET"H(T)) .
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Proof. An element g € Z2! represents a Cartier divisor if and only if g induces
principal divisors on the affine charts TV (8(7T")) with §(T) := (a* e F*|la ¢ T) €
N (V(Q, 6)) for every O-polystable tree T € 7°. This condition is equivalent
to g € Z" + F € 79!, Adapting the commutative diagram from the proof of
Proposition 11, we obtain

| ]

0—z7h NnF—7nh

l
0 F VA% H 0
l

\L forget \L sum

0 —FT) — 7z —H(T) —=0

Voo

0 0 0

It implies that the membership g € ZT' 4 T translates into the fact that the class
g € Hmaps to 0 € H(T). O

Corollary 20. Pic(Py(,0)) = {0’ € H| 6/(S) = 0 for S € Q with 6(S) =0
and Qs and Q|(g\s) being 6-semistable} .

In particular, a necessary, but only on 6 € M depending condition for

Pic (Pv(0.9)) = Z is that {9/ € Hg | 0'(S) =0for S C Qp with 6(S) = 0} =

R-6.

(5.3) Now, we turn to the main point of this section—the introduction of the
so-called flag quivers. They will allow an easy description of their Picard group as
well as, in Sect. 6, of their deformation theory.

Definition 21. A quiver Q without oriented cycles is called a flag quiver if

(i) there is exactly one source p? € Qo with m := 6¢(pY),
(ii) there are sinks pl, e, pl with m; = —Oc(pi) > 2, and
(iii) the canonical weight vanishes on the remaining knots, i.e. on Q¢ \{ p0 . Pl
In particular, we have m = Zle m;.

Remark. The condition “m; > 2” may be explained as follows: If m; = 1, then Q
cannot be tight, cf. Lemma 22. Moreover, tightening would mean to contract the
arrow pointing to p', hence to create a non-sink with negative weight.

54 The name “flag quiver” arises from the following example from [7]:
For positive integers ki, ..., kj+1, we set n; := ZL:] ky and n := n;41. Then, a
quiver Q(ny, ..., n;, n) may be defined via an (n x n)-ladder-box containing the
(ki x ki)-squares on the main diagonal. As depicted in the middle figure below,
Q) consists of the interior lattice points in the region below the small squares and
of the closures of the (/ 4 1) connected components of the part of the boundary of
this region that avoids the south west corners of the (k; x k;)-squares. As arrows
we take all possibilities pointing eastbound and northbound.
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ko
. . e ~e e
- ' V\ kijl—¢—2— uiver Q(2, 5)
anasd HEEN A aiver 00
In [7], the authors have originally considered Q*(ny, ..., n;, n) as depicted in

the left figure above: It is a kind of a dual quiver; its ordinary vertices correspond
to the boxes instead of the lattice points, and there are additional, exceptional, ver-
tices called “x” sitting in the south west corners of the (k; X k;)-squares. Neverthe-
less, it was shown that the corresponding X A () equals the cone over a projective

toric variety being a degeneration of the flag manifold Flag(ny, ..., n;, n). The
polytopes assigned to the quiver Q(ny, ..., n;, n) are called V(ny, ..., n;, n) and
A(ny, ..., ny, n), respectively.

(5.5) The polystability of subquivers has an easy meaning in the special case

of flag quivers:

Lemma 22. Let Q be a flag quiver. P C Q is 6°-polystable iff it is a union of
paths leading from p° to every sink p' (i =1, ...,1). Moreover, Q is tight if and
only if there are no verices with only one in- and outgoing arrow, respectively. In
particular, tightening preserves the property of being a flag quiver.

Proof. Both the criterion for polystability and the necessity of the tightness condi-
tion for Q are clear.

On the other hand, assume that Q satisfies this condition and let « € Q1 be an
arbitrary arrow. We may choose paths ¥ leading from p° to p?, but avoiding «.
Moreover, for any 8 # « there is a special path s(8) which, additionally, touches
B; let p“(ﬂ) be the sink reached by s(8). Then, with

RB) =3B U (Uypuy™)

we have obtained a union of paths encoding a polystable subquiver containing S,
but not «. In particular, | pta R(B) shows the polystability of the quiver P = Q\«.
O

Tight flag quivers may be visualized as a so-called fence, i.e. as a system of
mutually intersecting ropes leading from the [ different ceilings p', ..., p to the
only base p°. The intersections correspond to the knots b € Qo\{p°, ..., p'}. If,
moreover, the quiver is a plane one, then, by Corollary 8, the dimension of the
corresponding polytopes V(Q) and A(Q) may be read off the plane fence as the
number of compact regions.
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Example 23. Here, we present three fences of dimensions six, five, and again five.

/ p p ~

d

-

0(2,5) 0?

(5.6) Assume that Q is a tight flag quiver. Denoting by B € Qo\{p", ..., p'}
the set of blocking knots, i.e. those that are not avoidable in a set of paths leading
from p° to each of the ends p', ..., p!, respectively, the Picard number of Py(o)
will be #(B) + [. More precisely, we obtain

Proposition 24. Pic(Py(g)) = ker (ZP"—P1UB 2%, 7).

Proof. The 6¢-polystable subquivers are the unions of paths leading from p° to
{p',..., p'}. In particular, if 0" € Pic (Py(gp)), then 6'(b) = 0 for vertices b ¢
{p°, ..., p'} U B. On the other hand, since for each S as in Corollary (5.2) either
S or Qp\S contains { po, e, pl } U B, this remains the only condition. O

Example 25. o > © r e

> O >0
V(2,5) x P! x P! with Picard number 3

Knots x € B give rise to a decomposition of Q into a join of smaller quivers,
meaning that Py (g) splits into a product of projective varieties.

6. Deformation theory of flag quivers

6.1 Let Q be a tight flag quiver. From Theorem 1 and Corollary 14 we know
that the module 7)) of infinitesimal deformations of X »(g) = Cone(Pyg)) is built
from the spaces of Minkowski summands DY(F) of the faces F < A(Q). These
faces look like F (P, A(Q)) = A(I'g(P)) for 6°-polystable subquivers P < Q,
and, by Proposition 17, I"p (P) must be isomorphic to ' (k) to yield a non-trivial
D'. On the other hand, in the special case of flag quivers, Lemma 22 provides
an explicit description of the 6¢-polystable subquivers at all. Combining all this
information, we will get a complete description of T)}.

Definition 26. A knot b € Qo\{p", ..., p'} in a tight flag quiver is called simple
if

e bisof valence four, i.e. supporting exactly two pairs of in- and outgoing arrows,
respectively, and

e both pairs neither have, besides b, a common tail or head of valence four in the
set Qo\{po, el pl}, nor a common head pi with m; = 2, nor the common tail
p° withm = 2.
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Visualizing Q as a fence, then simple knots correspond to the simple crossings
of two ropes that are not adjacent to a further simple crossing of the same two ropes.

Example 23 (continued). In the first two quivers Q(2,5) and 0! of Example 23,
every knot of Q\{ p°, plyis simple. On the other hand, in 02, only b shares this
property. The remaining two knots provide for each other the reason to violate the
condition described in the previous definition.

Proposition 27. Let Q be a tight flag quiver with dim A(Q) > 3. Then, the only
faces F < A(Q) admitting a non-trivial Minkowsi decomposition are the two-
dimensional squares F(Q\b) with b being a simple knot.

(Q\b C Q denotes the subquiver obtained by erasing the four arrows containing b).

Proof. First, we consider the proper faces of A(Q). Lemma 22 tells us that
0¢-polystable subquivers P consist of one major component and a bunch of iso-
lated knots from Qo\{p?, ..., p'}. On the other hand, the only quivers providing
a non-trivial D! are I (k). If I'o(P) =T"(k) with k > 3, then Q would have to
contain oriented cycles. Thus, P = Q\{b} for some knot b.

Denoteby !, «? and !, B2 the pairs of in- and outgoing b-arrows, respectively.

Assuming that, for instance, a! and o2 had a common tail ¢ € Qo\{po, AU pl}
of valence four, then the two arrows having ¢ as common head could not occur in
paths avoiding b and leading from PPt {p',....p'}. In particular, P = Q\{b}

would not be stable. The reversed implication may be shown along the lines of the
proof of Lemma 22.

It remains to deal with the polytope A(Q) itself. If dim A(Q) > 4, then we
have just shown that every facet is Minkowski prime; this implies the same prop-
erty for A(Q), too. The three-dimensional case can be easily solved by a complete
classification. O

Corollary 28. For X a(g), the non-trivial T, (—R) are one-dimensional, and they
arise from degrees R = R(b) such that R(b) < 1 on A(Q) and R(b) = 1 exactly
on F(Q\b) with b being a simple knot.

(6.2) The precise description of T; given in Corollary 28 may be supplemented
by the following, more structural claim.

Theorem 29. Let X A(g) be the toric Gorenstein singularity assigned to the quiver
polytope of a flag quiver Q. Then, the simple knots b € Qo\{p°, ..., p'} paramet-

i(b
rize the three-codimensional Ay-strata Z(b) % x A(Q), and the module of the
infinitesimal deformations of X p(g) equals

Ty = @pi(b)s wzp) ® wy'
with o denoting the canonical sheaves on Z(b) and X.

Proof. We know from Corollary 14 that the three-codimensional singularities in
X A(p) correspond to the two-dimensional, non-triangular faces of A(Q) which are
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squares. On the other hand, Proposition 27 establishes their relation to the simple
knots b. For any of it we may define

T(b) := ®rayT' (—R(b)) = D' (F(Q\b))HR®)'S)

meaning to sum over all R(—b) in the sense of Corollary 28. Thus, the whole T;
splits, as a C-vector space, into T! = @®»T (b).

The module structure of T)l( has been explained in Theorem 1: The dual cone of
o = cone(A(Q)) € Nriso" = cone(V(Q)) € Mg with M := Hom(N, Z) =
F@Z,cf. (3.2). Whenever s € oMM vanisheson F(Q\b),i.e.if s € cone V(Q\b,
05) < cone V(Q), then the multiplication x* : T' (=R(b)) — T' (=R(b) +5)
is the identity map when both sides are identified with the one-dimensional D'
(F(Q\b)). If s does not vanish on F(Q\b), then the multiplication is zero.

Hence, the splitting of T'! respects the module structure. Moreover, on the
summands T (b), this structure factors through the surjection C[c¥ N M] —>
Clo¥ N F(Q\b)* N M] = C[cone V(Q\b, 0g) N M] with

T(®) = (®reintconevio. o5 € ¥ 1) ®c D' (F(Q\b)).

On the other hand, the semigroup algebra C[cone V(Q\b, 0&) N M] equals the
coordinate ring of the stratum Z(b), and it is a general fact for affine toric varie-
ties TV(z) = Spec C[r" N M] that @ g jnt ;v C - xX equals the canonical module

WTV(r)- 0O

(6.3) Eventually, we would rather like to study the deformations of the projec-
tive toric variety Py o) instead of that of its cone X 5 (). This just means to focus on
those multidegrees R with height or Z-degree 0,i.e.on R €e Fx {0} CFxZ = M.
To use Corollary 28 for describing the entire homogeneous piece T)} (0), it is helpful
to realize M as a subspace of Z2!. This is done by the isomorphism

Faz n(Z-69, (rngr—=r+gl
V-1L1Dr=V.

Under this map, the value of R = (v, g) € M on the vertex (a%, 1) of (V —1,1)
equals the [or]-coordinate of R = r + g1 € Z2!. In particular, multidegrees R of
height 0 are exactly those coming from 7 ~1(0 - 6¢) = F € 791,

Definition 30. Let b be a simple knot and denote by a', a? the tails of the two
arrows a!, o2 with head b, respectively; ¢!, ¢? are defined in a similar manner on

the outgoing arrows 8!, A2.

(11\ i /'C1
az/ \Cz
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An element R € Zg(g is called multipath from {a', a?} to {c', ¢?} if 7(R) =
[a']+[a®] — [c']— [c?]. The standard example is R := [a@']+ [e?]+[B']1+[B?]
through b.

Theorem 31. Running through the simple knots b € Qo\{p°, ..., p'}, the part
T}} (0) splits into T;( (0) = ®pTo(b), and the dimension of each Ty(b) equals the
number of multipaths leading from {a', a*} to {c', ¢*}, but avoiding b.

Proof. Corollary 28 characterizes the T!'-carrying multidegrees R(b) € Z2!
assigned to the knot b by the properties

e R(b), = 1 for « being one of the four arrows touching b and
R (D), < 0 for the remaining arrows « € (Q\b);.

On the other hand, the condition of having height 0 means R(b) € F, i.e. that
R(b) encodes an cycle inside Q. Hence, the negative multidegrees — R (b) repre-
sent cycles using each of the four h-arrows exactly once and in the wrong direction,
but respecting the orientation of the remaining arrows in Q. With other words,
R, — R(D) represents a multipath from {a!, a?} o {c!, %) avoiding b. |

Example 23 (continued). While, in the quiver 0" of (5.5), the vertices a and b give
rise to unique multidegrees R(a) and R(b) of height 0, there are five multipaths
corresponding to c. Leaving out R., the remaining four paths do not touch c. Hence,
they are responsible for four dimensions inside the six-dimensional T; 0).

(6.4) Whenever F < A(Q) is a face, then there exist always degrees R €
M = 7~Y(Z - 6°) such that R < 1 on A(Q) and R = 1 exactly on F—just take
R as the difference of 1 and an interior lattice point of the o"-face dual to F. In
particular, as we have already seen in Theorem 29, every simple vertex b provides
a contribution to T;.

However, it might happen that simple vertices b do not provide multidegrees
R(b) of height 0. In the following non-plane flag quiver Q3, every of the five
inner vertices is simple in the sense of Definition 26. While the knots cl, e, t
provide multidegrees R(c') of height 0, the knot » does not. The reason is that
there is exactly one multipath leading from {c3, ¢*} to {c!, ¢?}, but this multipath

touches b.

!

03 b

pO

Here is another example. The plane flag quiver Q* is built from Q' of Exam-
ple 23 in (5.5) by adding one single rope. However, this procedure removes the
b-contribution from Ty (0), i.e. To(b) = 0.
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Q4

In general, the absence of T;( (0)-pieces for a simple knot of Q means that the
corresponding A1-singularity is, even locally, not smoothable with deformations of
degree 0. Hence, to obtain smoothability of Py () in codimension three, a neces-
sary condition is that 7o (b) # O for every simple knot b of Q. Using Theorem 31,
this translates into the existence of detouring multipaths around every simple knot.

(6.5) We will show that the just mentioned necessary condition for smoothabil-
ity in codimension three is sufficient, too. For simple knots b, the one-parameter
deformations of X A (p) provided by the one-dimensional vector spaces T)} (—R(b))
are smoothings of the three-codimensional Aj-singularities along Z(b). The latter
are the orbits of the three-dimensional cones over the faces F(Q\b) < A(Q). The
question whether these one-parameter families fit together in a huge deformation
doing all the smoothings simultaneously leads to the investigation of T)%.

Theorem 32. Whenever R € M is a positive linear combination of degrees RieM
carrying infinitesimal deformations, i.e. T;(—R’) # 0, then T)%(—R) =0.

Proof. Because of Corollary 14 and Theorem 1, we may assume that R < 1 on
A(Q). To apply Theorem 2, we have first to check the three-dimensional faces
of A(Q) N[R = 1] € A(Q) for non-pyramids, i.e. to exclude octahedra and
prisms corresponding to the triangular quivers depicted in (4.2). While the latter
would provide a three-dimensional face with non-trivial D!, which is excluded by
Proposition 27, we need a finer argument for the octahedra:

The assumption of our theorem says that Ré = (a®, R") > 1 (in fact “=1")
holds exactly for the four arrows « containing the simple knot b(R"), cf. Corollary
28 or the proof of Theorem 31. In particular, since R is a positive linear combi-
nation of those R’, the relation (a®, R) > 1 is impossible, unless 7 (a) or h(e) is
a simple vertex. On the other hand, if R = 1 was true on an octahedron F(P),
i.e. on the arrows of I'g(P) = I'™(3), then two of the three vertices of "o (P)
would equal original vertices from Qo\{p?, ..., p'}. However, as for Q2 in Exam-
ple 23 of (6.1), the double arrow between these vertices implies that they cannot
be simple—providing a contradiction.

Let us now check the remaining assumptions of Theorem 2. The two-dimen-
sional, non-triangular faces of A(Q) N [R = 1] are squares provided by simple
knots b € Qg;the four vertices of these squares correspond to the arrows containing
b. In particular, the property of an arrow to contain exactly two knots translates into
the property of an vertex a* of A(Q) to belong to at most two of these squares.
This means that we are done in case of dim (A(Q) N [R = 1]) > 5.

For the remaining case dim (A(Q) N [R = 1]) = 4, our argument requires a
slight refinement. To obtain vanishing of D?, we do not use Theorem 2 itself, but the
stronger, original Theorem (4.7) of [2]: Since the quiver Q lacks oriented cycles, it
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provides a (non-linear) ordering of the set Q. Hence, whenever there is a connected
set of squares in our face [R = 1], then there is at least one vertex of one of these
squares that contains only this single square. Now, beginning with this particular
vertex, we may “clean” these squares in the sense of [2, (4.7)] successively. O

Remark. Itisnot true in general that T)% = 0, cf. Example 5. However, the previous
theorem says that at least the obstructions inside T)% are void.

Corollary 33. Gorenstein singularities provided by flag quivers are smoothable
in codimension three. Moreover, if every simple knot b can be by-passed with a
multipath connecting its neighbors, then this can be done by a deformation of
degree 0.

Proof. With the notation of Corollary 28, we choose one element R(b) € M for
each simple knot b. By the lack of obstructions, the corresponding one-parameter
families fit into a common deformation over a smooth parameter space S.

Now, looking at the general points of the singular three-codimensional strata,
S is obtained from their one-dimensional versal deformations via base change.
In particular, for each of these strata, there is a hypersurface in S containing the
parameters not smoothing this stratum. Hence, taking a curve inside S that avoids
all these hypersurfaces outside 0 € S, yields the desired smoothing. O

Example 34. The 5-dimensional projective varieties Py (o) corresponding to the
quivers 0!and Q2 of (5.5) are smoothable in codimension three. On the other hand,
for the quivers 03 and Q* of (6.4), we know this only for X r(p) = Cone(Py(g))
instead for Py o) itself.
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